Antagonistic Roles of Neurofilament Subunits NF-H and NF-M Against NF-L in Shaping Dendritic Arborization in Spinal Motor Neurons

نویسندگان

  • Jiming Kong
  • Vivian W.-Y. Tung
  • John Aghajanian
  • Zuoshang Xu
چکیده

Dendrites play important roles in neuronal function. However, the cellular mechanism for the growth and maintenance of dendritic arborization is unclear. Neurofilaments (NFs), a major component of the neuronal cytoskeleton, are composed of three polypeptide subunits, NF-H, NF-M, and NF-L, and are abundant in large dendritic trees. By overexpressing each of the three NF subunits in transgenic mice, we altered subunit composition and found that increasing NF-H and/or NF-M inhibited dendritic arborization, whereas increasing NF-L alleviated this inhibition. Examination of cytoskeletal organization revealed that increasing NF-H and/or NF-M caused NF aggregation and dissociation of the NF network from the microtubule (MT) network. Increasing NF-H or NF-H together with NF-M further reduced NFs from dendrites. However, these changes were reversed by elevating the level of NF-L with either NF-H or NF-M. Thus, NF-L antagonizes NF-H and NF-M in organizing the NF network and maintaining a lower ratio of NF-H and NF-M to NF-L is critical for the growth of complex dendritic trees in motor neurons.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neurotrophin-3 prevents the proximal accumulation of neurofilament proteins in sensory neurons of streptozocin-induced diabetic rats.

The relation between neurofilament expression and/or phosphorylation in the proximal versus distal components of the sensory peripheral neuraxis was studied and related to disorders in structure and function of the distal axon of streptozocin (STZ)-induced diabetic rats studied for 14 weeks. The ability of neurotrophin-3 (NT-3) to prevent abnormalities in neurofilament biology was also investig...

متن کامل

Disruption of the NF-H Gene Increases Axonal Microtubule Content and Velocity of Neurofilament Transport: Relief of Axonopathy Resulting from the Toxin β,β′-Iminodipropionitrile

To investigate the role of the neurofilament heavy (NF-H) subunit in neuronal function, we generated mice bearing a targeted disruption of the gene coding for the NF-H subunit. Surprisingly, the lack of NF-H subunits had little effect on axonal calibers and electron microscopy revealed no significant changes in the number and packing density of neurofilaments made up of only the neurofilament l...

متن کامل

Quantitative evidence for neurofilament heavy subunit aggregation in motor neurons of spinal cords of patients with amyotrophic lateral sclerosis.

Amyotrophic lateral sclerosis (ALS), a neurodegenerative disease of unknown etiology, affects motor neurons leading to atrophy of skeletal muscles, paralysis and death. There is evidence for the accumulation of neurofilaments (NF) in motor neurons of the spinal cord in ALS cases. NF are major structural elements of the neuronal cytoskeleton. They play an important role in cell architecture and ...

متن کامل

Formation of intermediate filament protein aggregates with disparate effects in two transgenic mouse models lacking the neurofilament light subunit.

Protein aggregates containing intermediate filaments (IFs) are a hallmark of degenerating spinal motor neurons in amyotrophic lateral sclerosis (ALS). Recently, we reported that a deficiency in neurofilament light subunit (NF-L), a phenomenon associated with ALS, promoted the formation of IF inclusions with ensuing motor neuron death in transgenic mice overproducing peripherin, a type III IF pr...

متن کامل

Protective effect of neurofilament heavy gene overexpression in motor neuron disease induced by mutant superoxide dismutase.

To investigate the role of neurofilaments in motor neuron disease caused by superoxide dismutase (SOD1) mutations, transgenic mice expressing a amyotrophic lateral sclerosis-linked SOD1 mutant (SOD1(G37R)) were mated with transgenic mice expressing human neurofilament heavy (NF-H) subunits. Unexpectedly, expression of human NF-H transgenes increased by up to 65%, the mean lifespan of SOD1(G37R)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 140  شماره 

صفحات  -

تاریخ انتشار 1998